QUALITY CONTROL AND QUALITY ASSURANCE IN MICROBIOLOGY

Dr. R. RAVI KUMAR MD.,

Associate Dean & Professor of Neuromicrobiology Retired

National Institute of Mental Health And Neuro Sciences

Ex Chief Coordinator NABH

Kidwai Memorial Institute of Oncology

Bangalore, Karnataka State, India

6/18/2024

OVERVIEW

INTRODUCTION IMPORTANCE RELEVANT ABBREVIATIONS DEFINITIONS SOME CONCEPTS FACTORS INFLUENCING QUALITY ORGANISATION OF THE LABORATORY

- EQAS
- IQA
- QC OF DIFFERENT SECTIONS
- PRESERVATION OF STOCK CULTURES

NATIONALREFERENCECENTRES

INTRODUCTION

Health services are utilizing laboratories extensively

Demand for quality results has been echoed by all health professional

Unreliable results – disastrous consequences!

IMPORTANCE

As communicable diseases continue to be a major public health problem.....

Microbiological laboratories will play a vital role in confirming the diagnosis as well as indicating suitable intervention measures.

RELEVANT ABBREVIATIONS

ATCC- American Type Culture Collection NTCC- National Type Culture Collection **EQA- External Quality Assessment EQAS-** External Quality Assessment Scheme **GLP- Good Laboratory Practice IQC-Internal Quality Control**

RELEVANT ABBREVIATIONS

ISO- International organization for standards NCCLS-National Committee on Clinical Laboratory services. SOP-standard operating procedure TQM-total quality management.

DEFINITIONS

Quality-- Meeting the predetermined requirements of the users for a particular substance or service.

Quality Control (QC)-

which primarily concerns the control of errors in the performance of tests and verification of test results.

Quality Assurance (QA)-

The total process whereby the quality of laboratory reports can be guaranteed.

MR. RIGHT?

- Right Result
- Right Time
- Right Specimen
- Right patient
- Correct Reference data
- Right Price

SOME CONCEPTS

CONTINOUS QUALITY IMPROVEMENT GOOD LABORATORY PRACTICES TOTAL QUALITY MANAGEMENT QUALITY ASSURANCE PROGRAM QUALITY SYSTEM STANDARD OPERATING PROCEDURES AUDIT AND ACCREDITATION

GOOD LABORATORY PRACTICE

If something can go wrong-- it will!

6/18/2024

TOTAL QUALITY MANAGEMENT

Every variable that could possibly affect the quality of the test results has been controlled.

QUALITY ASSURANCE PROGRAM

Concerned with sampling, specifications and testing that ensures that relevant steps have been taken to ensure quality.

COMPONENTS

- 1. Trained competent staff
- 2. Resources and equipment of good quality
- 3. Corrective steps/ preventive maintenance
- 4. Documentation/ co-ordination/ feedback

QUALITY SYSTEM

Organizational structure, responsibilities and resources for implementing quality management.
Sum total of activities which uses resources

to transform inputs into outputs.

DOCUMENTATION IN THE LABORATORY

If it is not Recorded – it has not been Done!

STANDARD OPERATING PROCEDURES

AUDIT AND ACCREDITATION

Quality Audit- critical review of the laboratory

First party- by the staff themselves

Second party-supplier audits

Third party-by regulatory/ statutory bodies

Accreditation- Approved procedure by which an authorized body accords formal recognition to a laboratory provided hat predefined standards are met by the laboratory.

INTERNATIONAL STANDARDS ORGANISATION (ISO)

- Non governmental body founded in 1947
- Brought together the international committee in developing uniform standards
- Headquarters in Geneva
- More than 43 categories
- ISO 15189- quality management in medical labs.

FACTORS INFLUENCING QUALITY

PRE ANAYTICAL

- Age dependant variations
- Incorrect specimen identification
- Prolonged transportation
- Selection of appropriate samples
- Selection of the right test method
- Sending the sample to the right lab
- Collecting the right specimen

ANALYTICAL

- 1. Equipment reliability
- 2. Reagent stability, integrity & efficiency
- 3. Adequate calibration
- 4. Specificity, accuracy & precision of test
- 5. Procedural reliability using Standard Operating Procedures Manual (SOPM)
- 6. Proficiency of personnel
- 7. Good IQC
- 8. EQAS

POST ANALYTICAL

- Accurate recording
- Range of normal values
- Turnaround time
- Urgent reports
- Records for two years

ORGANISATION OF THE LABORATORY

SIZE	PATIENT LOAD
Small	<50
Medium	51- 500
Large	> 500
Superspeciality	One or two disciplines

ROLE OF A QC OFFICER

- Setting up and organizing QC measures
- Regular review of all procedures
- Issue of IQA specimens
- Issue and return of EQA specimens
- Rectification of problems
- Recommendations regarding procurement of materials

EXTERNAL QUALITY ASSESSMENT SCHEME

Assessment of quality in a schematic way through an external agency using material of known but undisclosed results.

- Earlier called **PROFICIENCY TESTING**.
- **Objectives-**
- Monitor lab performance
- Establish inter lab compatibility
- Ensure credibility of the lab
- Identify common errors

Facilitate information exchange

STEPS IN EQAS

REQUIREMENTS OF EQAS

The material supplied Documentation of the accompanying material Manner of performing the test Turn around time and frequency

Anonymity of the participating labs

INTERNAL QUALITY ASSESSMENT

Similar to EQAS except that the material is prepared, distributed, evaluated and results assessed internally.

QA = QC + EQA + IQ

QC OF DIFFERENT SECTIONS

- LABORATORY MATERIALS
- MEDIA
- **STAINS**
- BACERIOLOGICAL TECHNIQUES
- ANTIBIOTIC SUSCEPTIBILITY TESTING
- SEROLOGY
- **STERILIZATION**
- EQUIPMENT

LABORATORY MATERIALS

Pipettes

Cleaning glassware

Reagents

Chemicals-

Analytical Reagent (AR) grade

Reference sera

MEDIA

Raw material parameters **Sterilization parameters Physical parameters Microbiological parameters Contamination parameters** Gel strength parameters

Raw material parameters-

Water

Petri dishes- Eto Blood

Sterilization parameters-

Autoclave- time, temperature, volume of media, pressure Sterilization indicators

BOWIE DICK TAPES

Physical parameters-

Excessive bubbles or pits, unequal filling of plates, cracked medium in plate

Mean Thickness- 4.0 + 0.2 mm

Microbiological parameters-ECOMETRIC method PRODUCTIVITY ratio

SUGGESTED CONTROL ORGANISMS

MEDIUM	CONTROL ORGANISM	EXPECTED REACTIONS
Blood agar	Gp A streptococci S. pneumoniae	β-haemolytic α-haemolytic
Chocolate agar	H. Influenzae N. gonorrhoeae	Good growth Good growth
Urea agar	P. mirabilis K. Pneumoniae E.coli	Pink throughout (+) Pink slant (partial +) Yellow (-)

MEDIUM	CONTROL	EXPECTED
	ORGANISM	REACTIONS
Citrate agar	K. pneumoniae	Growth/blue color (+)
	E. coli	No growth/green (-)
MacConkov agar	E Coli	Pink (+)
Macconney agai	P. mirabilis	Not Pink(-)
Voges- Proskauer	K. pneumoniae	Red
	E. coli	No colour
ONPG	Serratia marcescens	Yellow(+)
	S. Typhimurium	Colorless (-)
SS agar	S. Typhimurium	Colorless colonies, black centre
	E. coli	No growth
6/18/2024		39

STAINS

Stain	Control organism	Expected result
Gram	E. Coli Staph. aureus	Gram –ve bacilli Gram +ve cocci
Ziehl-Neelsen	Mycobacterium	Pink bacilli
Giemsa	Thin film blood smear	Distinct staining of WBC's and RBC's 40

BACTERIOLOGICAL TECHNIQUES

Procedure Test	Control Organism	Expected	Expected
ICSL	Organishi	resuit	reaction
Catalase	Staph aureus	+	Bubbling
	Streptococcus	-	reaction
	sp		No bubbling
Oxidase	P. aeruginosa	+	Purple color in
	E. coli	-	20 sec
			No color in 20
			sec
Coagulase	Staph aureus	+	Clot formation
	Staph	-	in 4hrs
6/18/2024	epidermidis		No clot 41

BACTERIOLOGICAL TECHNIQUES

Procedure Test	Control Organism	Expected result	Expected reaction
Indole	E. Coli	+	Red colour
	Enterobacter aerogenes	-	No colour develops
Methyl red	E. Coli	+	Instant red
	Enterobacter	-	colour
	aerogenes		No colour
Voges	Enterobacter	+	Red colour
proskauer	aerogenes	-	No colour
	E. Coli		change

ANTIBIOTIC SUSCEPTIBILITY TESTING

Indications

Direct Vs indirect susceptibility testing

Three category system-

- Susceptible- when the infection caused by it is likely to respond to treatment with this drug at the recommended doses
- Intermediate-moderately susceptible to an antibiotic that can be used for treatment at higher doses because of its lower concentrations or its concentration in the focus of infection.
- Resistance-expected not to respond to a given drug irrespective of the dosage and the location of infection.

STANDARD PROCEDURE FOR QUALITY CONTROL

STANDARD STRAINS

Staphylococcus aureus (ATCC 25923) Escherichia coli (ATCC 25922) Pseudomonas aeruginosa (ATCC 27853)

Subculture every 2 weeks

SEROLOGY

- 1. Procedure manual
- 2. Selection of test or procedure
- 3. Control sera
- 4. Performance of tests- antibodies/ antigens
- 5. Reporting & record keeping

QC OF TESTS DETECTING ANTIBODIES

Antibody test	Control procedures required	Expected results
Latex agglutination	-ve control serum	No clumping
test (ASO)	+ve control serum	Clumping
Direct agglutination	Antigen control	No clumping
(Widal test)	-ve control	No clumping
	+ve control	Clumping
Flocculation test	NR serum control	No clumping
(RPR)	WR serum	Clumping graded
	control	Clumping graded
6/18/2024	Reactive serum control	47

QC OF TESTS DETECTING ANTIGEN

Antigen test	Control material	Expected results
Quellung reaction	Pneumcocci Hemolytic streptococci	Capsular swelling No reaction
Co agglutination test	Gp ABC streptococci N. meningitidis	Agglutination with corresponding serum

STERILIZATION

Process	Physical methods	Chemical methods	Biological test organisms
Dry heat	Temperature recording charts	Colour change indicator	B. Subtilis var. niger
Moist heat	Temperature recording charts	Colour change indicator	B. stearotherm- ophilus

EQUIPMENT

Equipment	Procedures	Sched ule	Tolerance limits
Refrigerators	Recording of temperature	Daily	2°C to 8°C
Freezers	Recording of temperature	Daily	-8°C to -20°C -60°C to-75°C
Incubators	Recording of temperature	Daily	$35.5^{\circ}C \pm 1^{\circ}C$
Water baths	Recording of temperature	Daily	36°C to 38°C 55°C to 57°C
Autoclaves	Test with spore strip	Weekly	No growth of spores in subcultures indicate sterile run
Anaerobic jars	Methylene blue indicator strip	With each use	Conversion of strip from blue to white indicates low 0 tension
Centrifuges 6/18/2024	Check revolutions with tachometer	Monthly	Within 5% of dial indicator setting 50

PRESERVATION OF STOCK CULTURES

For the purpose of employing a quality control procedure that can prevent avoidable mistakes

No single ideal method that can be universally applied

Method	Surviv al period	stabil ity	conta minati on	cost	Ease of supply	durat ion
Subculture	+	+	++++	+	+	+
Gelatin discs	++	++	+	+	++	++
Lyophilizat ion	+++	+++	+	+++	+++	+++
Liquid nitrogen	++++	++++	+	++	+	+++

Enterobacteriaceae-ABST **Checking differential media Pseudomonas-Oxidation-Fermentation test** Vibrio-On heart infusion agar slants with 1.5 % NaCl.

```
Staphylococci-
ABST, Coagulase, Catalase, DNAase, CAMP
test
```

Streptococci-Bacitracin, B haemolysis

Gp B strep - CAMP test. Hippurate hydrolysis Gp D strep - Bile aesculin

Fungi- on SDA with screw capped bottles in the dark Transfers every 2 to 3 months 6/18/2024

54

LIST OF NATIONAL REFERENCE CENTRES

	ORGANISM	CENTRE
	Staph phage	MAMC
	Salmonella	CRI Kasauli
	Salmonella phage	LHMC
	E coli	CRI Kasauli
	Tuberculosis	NITB
	Polio	NICD
	Rabies	NICD
	Filariasis	NICD
6/18/2024	Cholera	NICED

55

LIST OF NATIONAL REFERENCE CENTRES

ORGANIS	M CENTRE
Yaws	NICD
Yellow fev	er NICD
Guinea Wo	rm NICD
Leptospiros	sis Port Blair
Plague	NICD
HIV	NACO
6/18/2024 Influenza	CRI Kasauli

